翻訳と辞書 |
Hilbert's arithmetic of ends : ウィキペディア英語版 | Hilbert's arithmetic of ends In mathematics, specifically in the area of hyperbolic geometry, Hilbert's arithmetic of ends is a method for endowing a geometric set, the set of ideal points or "ends" of a hyperbolic plane, with an algebraic structure as a field. It was introduced by German mathematician David Hilbert.〔Hilbert, ''"A New Development of Bolyai-Lobahevskian Geometry"'' as Appendix III in ''"Foundations of Geometry"'', 1971.〕 ==Definitions==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hilbert's arithmetic of ends」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|